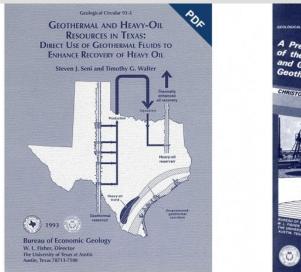
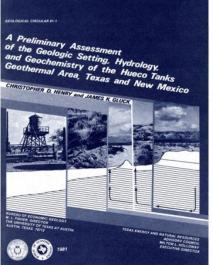
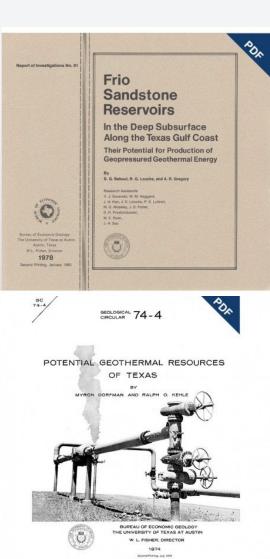
Geothermal Power Overview

Ken Wisian Ph.D., Major General USAF (ret) Associate Director, Bureau of Economic Geology Jackson School of Geoscience The University of Texas at Austin ken.wisian@beg.utexas.edu

The Bureau of Economic Geology


- <u>The Bureau of Economic Geology</u> established in 1909, is the oldest research unit at the University of Texas at Austin and is also the State of Texas Geologic Survey. 150+ FTEs
- We focus on:
 - Applied research solving near-term problems
 - Industry research consortiums, including the newly formed **HotRock** geothermal
 - Government and privately funded research
 - International energy and environmental research projects (we are not just Texas)




The Bureau and Geothermal Energy

- Academic geothermal community is pretty small
- We have been in geothermal since its first boom in the US in the 70's
- Foundational work is still relevant
- We have a strong and growing geothermal team from across UT Austin
- Launching a geothermal industry research consortium; *HotRock*

Ken Wisian, Ph.D., Major General USAF (retired)

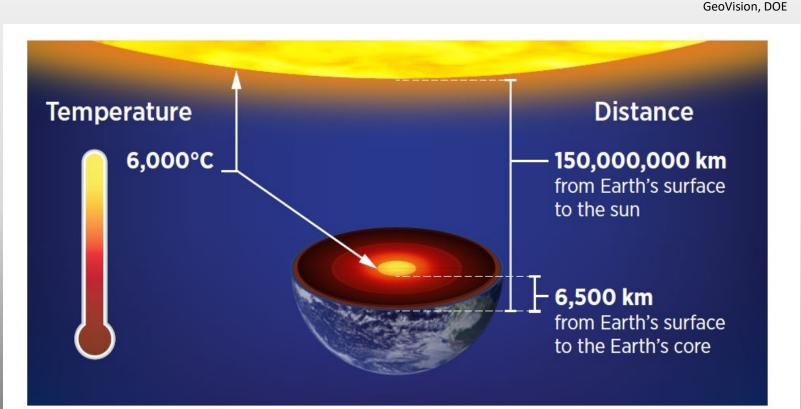
Associate Director, Bureau of Economic Geology, The University of Texas at Austin

Education:

Ph.D.	Geophysics	S
M.S.	Geology	С
M.S.S.	Strategic Studies	L
B.A.	Physics	L
Graduate		

Southern Methodist University Centenary College of Louisiana US Army War College University of Texas at Austin USAF Test Pilot School

Expertise:

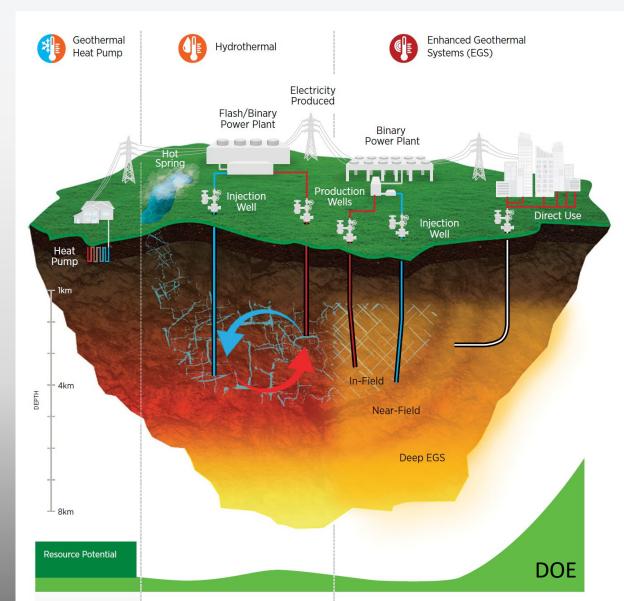

Thermal geophysics, geothermal systems, resource assessment, geothermal exploration, sensors, well logging, fluid & heat flow modeling, planetary geology

Project management (>\$1Billion projects), technology development, systems integration, developmental test and engineering, risk management

Intro – Earth's Heat

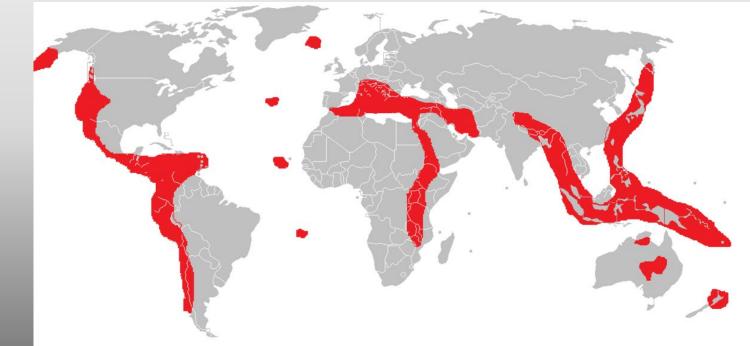
- ~47TW of heat flow 24/7 out of the Earth
- Even better thousands of times this amount of energy is extractable heat stored in the upper 10 km of the crust

Geothermal Systems


(we are not talking heat pumps for your house)

- All you need to generate power is a temperature difference – between the rock at depth and the surface
 - In most power plants the heat is from burning fossil fuel or uranium, for geothermal we get the heat (free) from the Earth
- Conventional Geothermal
 - Mines hot water or steam in the ground
- Geothermal Anywhere

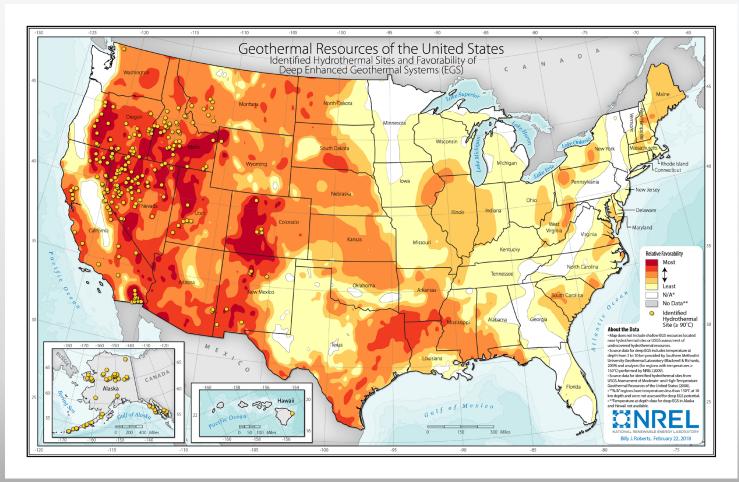
Economic


TEOLOGY

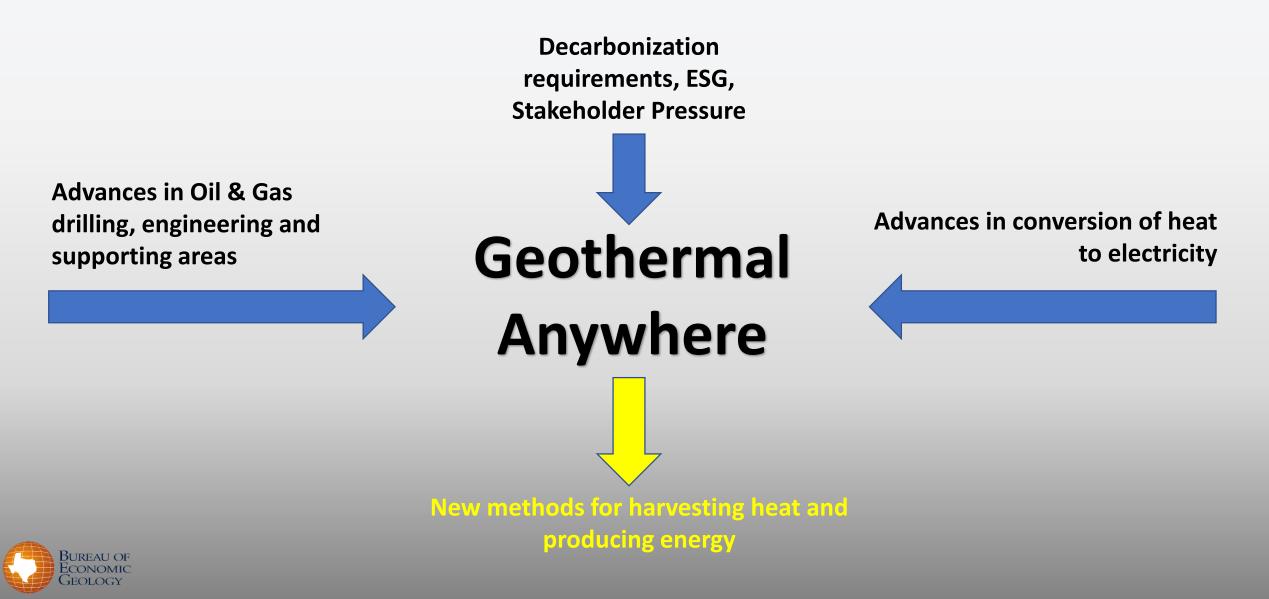
- Mines the heat in the rock
- Enhanced Geothermal Systems (EGS), Advanced Geothermal Systems (AGS), <u>Closed Loop</u> Geothermal Systems (CLGS) ...naming is not settled...
- Unlike wind & solar, All Geothermal are 24/7 – Baseload!!!

Plate Tectonics – the limiting factor till now

- Determines the "Conventional" Resource Location
- US (west of the Rockies) is the world's largest producer of geothermal energy but it is <0.5% of the US grid –
- Until now geographically very restricted
 - Still has ~3x growth potential



https://energyeducation.ca/encyclopedia/Geothermal_electricity#cite note-6 Adapted from: R. Wolfson, "Energy from Earth and Moon" in *Energy, Environment, and Climate*, 2nd ed., New York, NY: W.W. Norton & Company, 2012, ch. 8, pp. 204-224


Geothermal Anywhere

- Uses an artificial circulation system to "hoover up" heat, concentrate it and bring to the surface
- Opens up much more of the Earth to viable geothermal production
- Multiple recent geothermal leases issued in Texas



Why the excitement now?

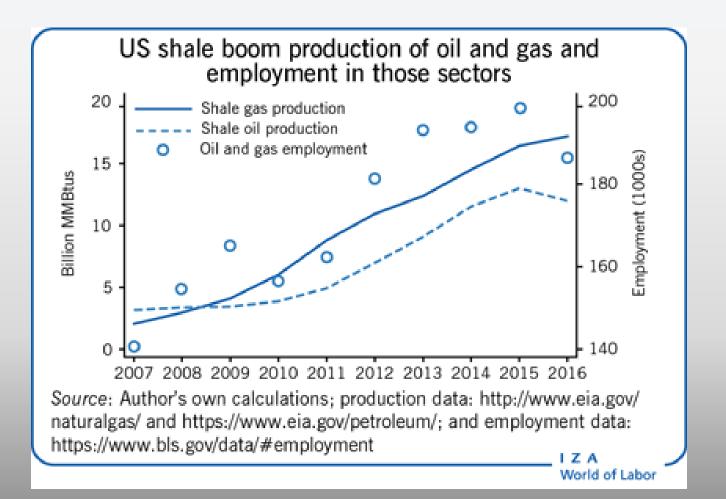
The potential

- As happened with O&G multiple times (most recently the shale/frac boom) we are on the edge of a paradigm shift
- Significantly and rapidly diversify our grid (rapid scale-up possible)
 - Currently not in most energy forecasts!
- Perfect pivot for O&G workforce

Geothermal Anywhere

Geothermal Anywhere Advantages

- Baseload /Load following
- Extremely resilient
 - No supply logistics
 - EMP resistant (short transmission distances)
 - Weather/disaster resistant
- Low to zero (to slightly negative) carbon
- Price-competitive with other electric sources
- Install where power is needed
 - reduced transmission issues
 - Great for remote/rural/island settings also
 - Small footprint
- Direct use for heating and cooling where temperatures are low, or by using the "waste" heat from power plant
 - Actually the most energy efficient use of geothermal heat
 - ~80% versus ~15% for electricity generation (at lower temperatures)



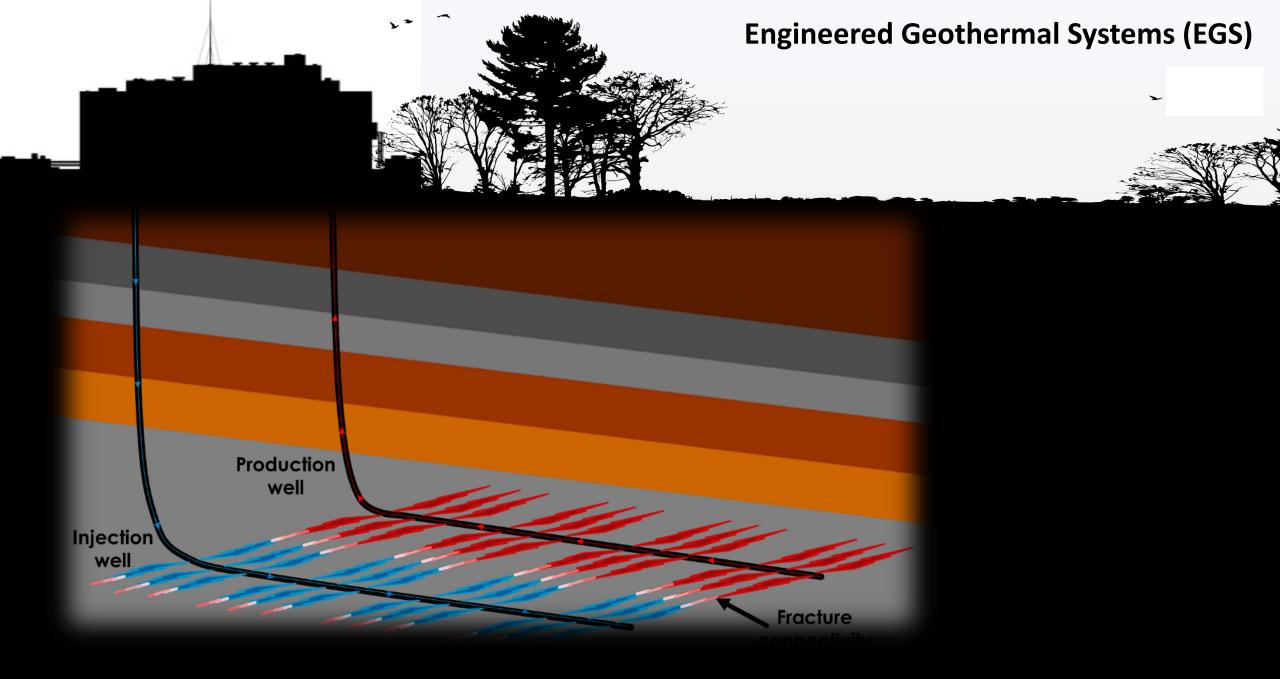
WikimediaCommons <u>https://commons.wi</u>kimedia.org/wiki/File:NesjavellirPowerPlant_edit2.jpg#/media/File:NesjavellirPowerPlant_edit2.jpg

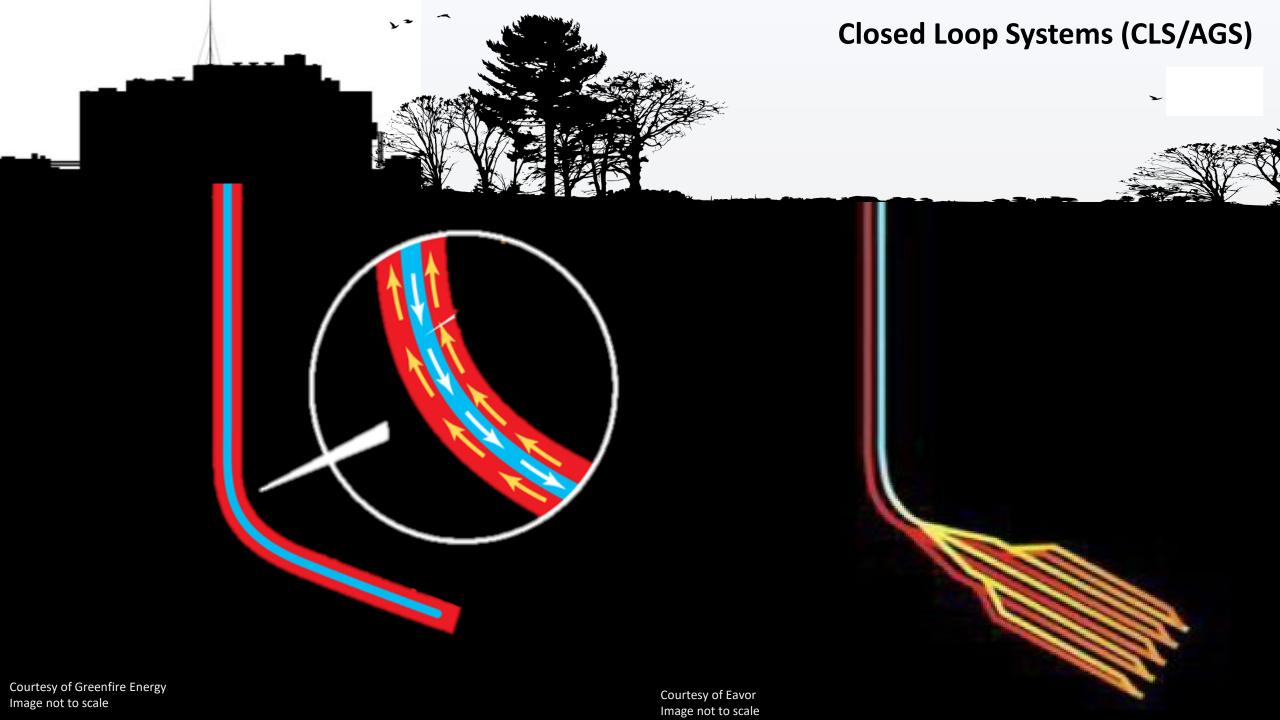
Jobs from the shale boom 2007-2016

- Geothermal Anywhere has similar potential but with a softer/broader tail
 - It will take many decades to build out the world
- Geothermal Anywhere is at about 2005 on this scale
 - Now is an excellent time to jump in

Who are the players?

- Startups lead the way
 - With some academic support
 - The academic geothermal community is very small
 - Funding rounds appear to be going well
 - Also several exotic drilling tech startups
- DOE traditional funder of geothermal R&D
- DoD is jumping in
 - Geothermal is the USAF #1 new energy price (above SMRs)
 - Perfect early adopter •
 - Solves a critical vulnerability
- The major energy, utility and related companies are largely still watching
 - All show strong interest and next have geothermal teams set up
 - A trickle of acquisition.
 - Some old learning styl persists
 - Want to see proven ROI

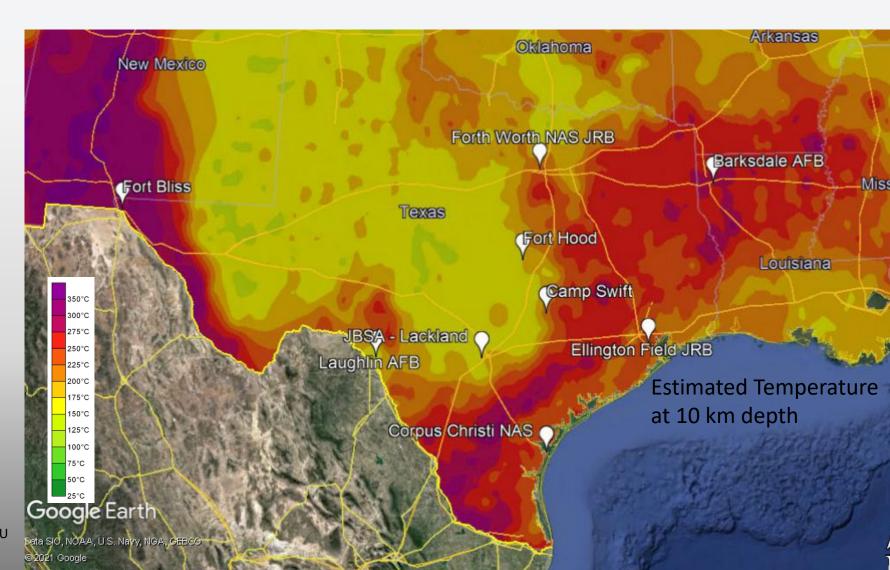




Courtesy of Geothermix Image not to scale

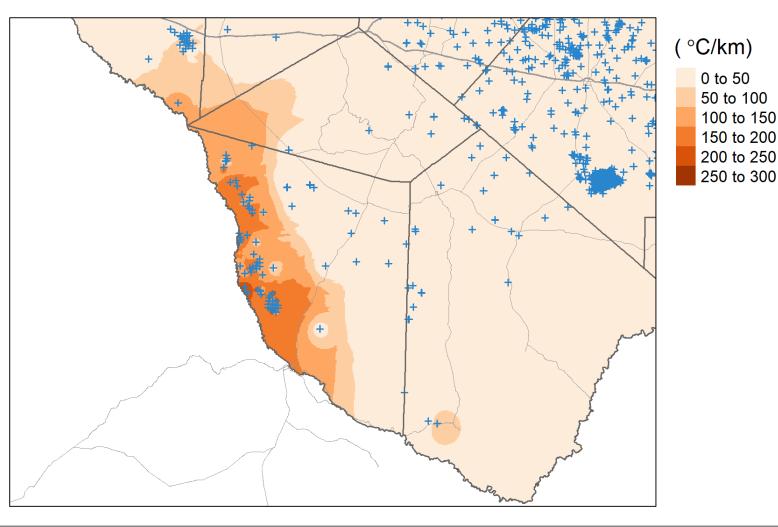
A little bit on risk

- Relative to Oil & Gas
 - Conventional Geothermal similar to Oil & Gas
 - Searching for fluid
 - Risk remains high till well test
 - Geothermal Anywhere
 - Searching for heat/temperature
 - Generally lower risk (you will hit your temperature eventually)
 - Fracture-based (very different from oil and gas fracking fracture development)
 - Risk remains till the stimulation at the end of drilling
 - Non Frac-Based
 - Less risk than above, but more complex drilling likely needed
 - Many km of laterals -> \$\$



Texas' Geothermal Potential as an example

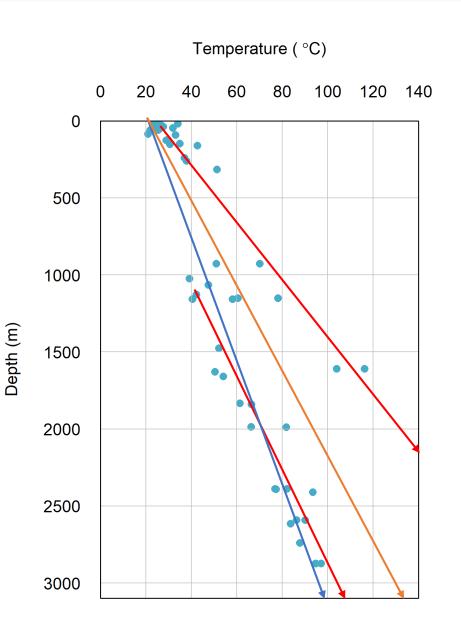
- Variety of geologic / thermal settings across the state
- Good infrastructure
- Friendly environment
- Outside the "conventional" geothermal zone
- Strong private, utility and energy company interest
- Multiple recent geothermal leases issued in Texas



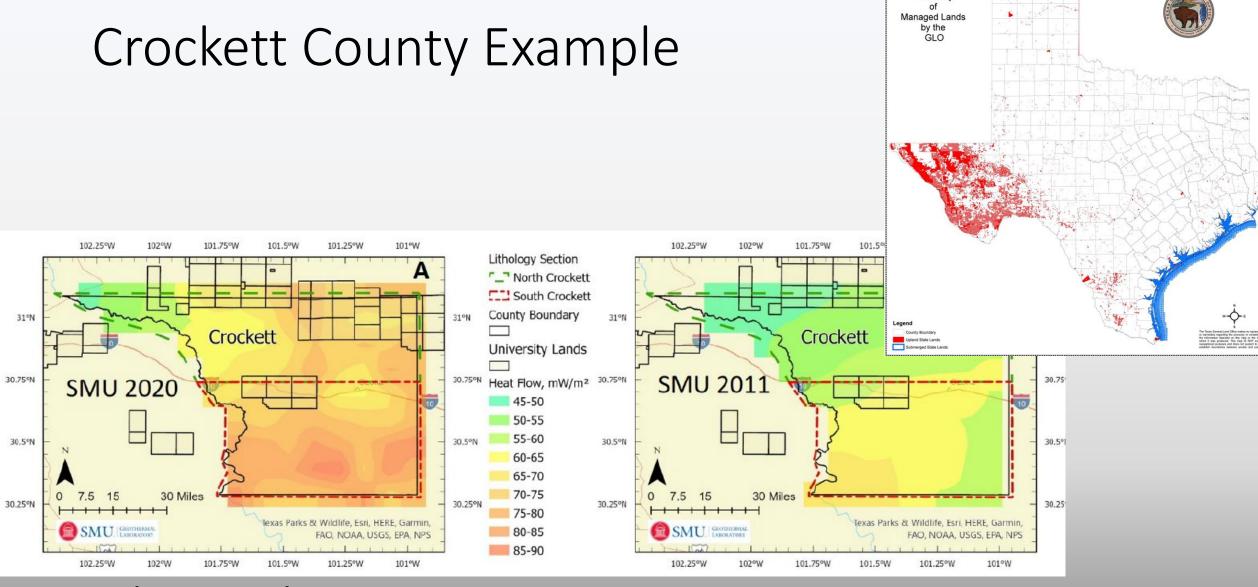
Modified after SMU Geothermal Lab

More refined view of Presidio and surrounding Counties – good news / bad news

- Much hotter nearer the border
- The hot zone has mostly shallow wells
 - Less reliable
 - May be due to water movement
 - Needs a deep well to test (\$\$)



Presidio County Temperatures


- Two distinct trends
 - Hotter one has few deep data points needs further investigation
 - Reaches 150°C (300°F) by about 2.5 km (8,200 ft)
 - Cooler one probably not viable at this time
- Geographic/Geologic correlation
 - Two distinct regimes with a large transition zone

 - Map-based estimations
- Bottom line: economics might be much better than previously realized

Presidio County

Inventory

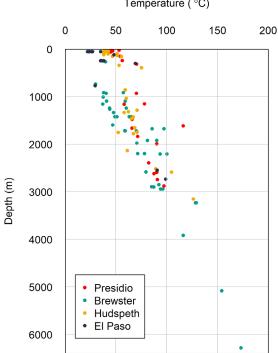
• Shows similar increase in resource

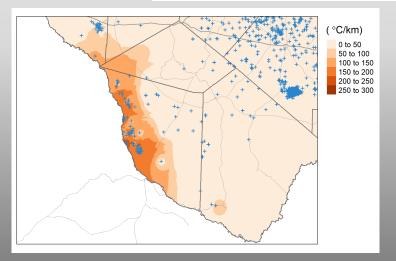
Legal Issue – Who Owns the Heat?

- Varies state by state
 - Are you mining formation fluids or the heat in the rock?
- Largely unresolved east of the Rockies(?)
- Texas recent legislative session clarified points of law
 - TXGEA Texas Geothermal Energy Alliance
- Liability issues
 - Induced seismicity low risk
 - Aquifers/water draw negligible risk for closed systems

Inflation Reduction Act impact

- Geothermal qualifies for Investment Tax Credit or Production Tax Credit at full value (can elect either)
 - Full value: 30% ITC or ~\$26.25 /MWh PTC for first 10 years of production in 2022
 - Full value requires meeting prevailing wage and apprenticeship requirements for project construction. Failure to meet these requirements results in 20 % of the full value
- Bonuses: 10% increase in PTC value (e.g. \$2.6/MWh) or 10 percentage point increase in value of ITC for either of the following
 - Domestic content
 - Energy communities: projects in any of following locations: brownfield site, high unemployment, closed coal mine or power plant nearby
- Transferability and Direct Pay for PTC/ITC
 - Direct pay for non-profit and government-owned utilities (full refundability) a game changer for public utilities
- DOE Loan Programs Office
 - 1703 Program for "Projects That Employ Innovative Technologies" ~\$45B
 - New 1706 Program, Energy Community Reinvestment Financing
 - \$5 billion appropriated for FY2022 available through FY2026 for which may provide commitments of up to \$250 billion in loans and guarantees




Temperature (°C)

Recent Bureau work in Geothermal

- DoD / USAF / AFWERX / DIU
 - First new geothermal power plant design in decades ٠
 - USAF now rates geothermal as the #1 new energy focus (above SMRs)
- Resource assessments USGS, local and Private Funding
 - Lots of BHT w/ its inherent problems
 - Working through Texas county by county to build thermal picture
 - Incorporating burial history, radiogenic production & lithology •
- Induced seismicity monitoring DoD and State funding
 - Ongoing work in South Texas and Houston
- Big-data/ML applications
- Direct Use
- System modeling
- Part of two teams with \$150M research proposals under consideration DOE GEODE and NSF Innovation Engine
- Economics, Social/DEI/ESG, Powering CO2 capture and storage, lithium extraction, Desal

Presidio and surrounding counties raw temperatures and geothermal gradient

US Air Force, AFWERX STTR Phase 2 (complete)

- R&D of a 3MW Geothermal Power Plant at Ellington Field (south side of Houston)
 - Led by Sage Geosystems (start-up)
 - Proof of concept for several component technologies
- In the Gulf Geopressure Zone
 - Other commercial projects brewing along this play?
- A successful project in Houston, "Oil City", will get attention that a similar project further west would not

THE UNIVERSITY OF TEXAS AT AUSTIN

HotRock Geothermal Research Consortium

- Vision an industry-funded research consortium to find and fill the science, technology, economics, policy, and entrepreneurship gaps needed to further develop the geothermal-anywhere ecosystem; led by the Bureau, the organization with the skills and proven track record to lead major enterprises
- Scope subsurface geology and engineering; surface power generation, grids, economics, and policy; direct heat applications for heating and cooling, agriculture, etc.; subsurface thermal storage; hybrid systems; etc.
- Principal investigators Ken Wisian, BEG; Shuvajit Bhattacharya, BEG; Silviu Livescu, Petroleum and Geosystems Engineering; Nicola Tisato, Geological Sciences

The Future of Geothermal in Texas

THE COMING CENTURY OF GROWTH & PROSPERITY IN THE LONE STAR STATE

The Future of Geothermal in Texas Contemporary Prospects and Perspectives

Edited by Jamie C. Beard, Esq. & Dr. Bryant A. Jones

https://cgmf.org/p/geothermal-energy-texas_report.html

The Future of Geothermal in Texas

PART I Geothermal Concepts with Applicability in Texas				
	1.	<mark>Geothermal and Electricity Production: Scalable Geothermal Concepts</mark> S <mark>. Livescu,</mark> B. Dindoruk, R. Schulz, P. Boul, J. Kim, and K. Wu	25	
	2.	Direct Use Applications: Decarbonization of Industrial Processes & Heating and Cooling Scenarios S. Kapusta, <mark>S. Livescu,</mark> B. Dindoruk, R. Schulz, M. Webber	47	
	3.	<mark>Other Geothermal Concepts with Unique Applications in Texas</mark> B. Dindoruk, <mark>S. Livescu</mark> , M. Webber	61	1
PA	RTI	1		
Geothermal and Texas Resources				
	4.	The Texas Geothermal Resource: Regions and Geologies Ripe for Development K. Wisian, S. Bhattacharya, M. Richards	76	
	5.	The Oil and Gas Industry Role: Technology Transfer, Development, Acceleration, and Scale R. Schulz, <mark>S. Livescu</mark>	130	
	6.	<mark>Oil and Gas Industry Engagement in Geothermal: The Data</mark> J. Beard, <mark>K. Wisian, S. Livescu</mark> , B. Jones	160	
	7.	The Geothermal Business Model & the Oil and Gas Industry: Challenges and Opportunities T. Lines	182	
Ľ	8.	<mark>Other Strategic Considerations for Geothermal in Texas</mark> K. Wisian, P. Boul	230	
	9.	The Texas Startup and Innovation Ecosystem	244	

9. The Texas Startup and Innovation Ecosystem J. Beard

PART Enviro	III nmental, Policy, Economic, & Legal Considerations	
10.	E <mark>nvironmental Considerations and Impact</mark> M. Young, <mark>K. Wisian</mark>	264
11.	Geothermal, the Texas Grid, and Economic Considerations M. Webber, D. Cohan, B. Jones	283
12.	Policy, Advocacy, and Regulatory Considerations in Texas B. Jones, M. Hand, J. Beard	299
13.	State Stakeholders: Implications and Opportunities - General Lands Office and University Lands J. Tackett, J. Moss	318
14.	Who Owns Heat? Ownership of Geothermal Energy and Associated Resources under Texas Law B. Sebree	332

If you want to stay informed...

- Think GeoEnergy https://www.thinkgeoenergy.com/
- DOE GTO <u>https://www.energy.gov/eere/geothermal/geothermal-</u> <u>technologies-office</u>
- Geothermal Rising https://www.geothermal.org/
- InnerSpace and PIVOT conference https://www.projectinnerspace.org/
- International Geothermal Association https://www.lovegeothermal.org/
- Stanford Geothermal Workshop <u>https://geothermal.stanford.edu/events/workshop</u>

Questions?

By the way... there is geothermal in sp

Contact: Ken Wisian Ph.D., Major General USAF (retired) Associate Director, Bureau of Economic Geology The University of Texas at Austin <u>ken.wisian@beg.utexas.edu</u>

Back-up slides

