NEW SOLUTIONS THAT ENABLE: GRID RESILIENCY CARBON REDUCTION COST STABILITY COAL REPLACEMENT

November 2023

Energy Storage For A Better World

New options for coal replacement: Coal to gas switching

Alternative futures for Fayette Units 1 and 2

Natural Gas

New options for coal replacement: Zero-carbon Renewables + Li-Ion

New options for coal replacement: Renewables + all storage

Form

Why we started Form

To give utilities the tools they need to solve their biggest problems associated with the energy transition:

Intermittency of renewable assets creates periods of undersupply

Clean energy goals and changing economics risk stranding fossil assets

Extreme weather events are becoming more frequent and disruptive to customers

Transmission congestion and interconnection queue backlogs are increasing

CONFIDENTIAL

Rising to the grid's challenges with a team that will deliver

OUR INVESTORS: LONG-TERM AND IMPACT-FOCUSED

\$820M in venture capital from top investors including: Breakthrough Energy Ventures (BEV), TPG's Climate Rise Fund, Coatue Management, GIP, NGP Energy Technology Partners III, ArcelorMittal, Temasek, Energy Impact Partners, Prelude Ventures, MIT's The Engine, Capricorn Investment Group, Eni Next, Macquarie Capital, Canada Pension Plan Investment Board, and other long-term, impact oriented investors

BY ENERGY STORAGE VETERANS LED

Decades of cumulative experience in energy storage

100's of MW of storage deployed

FROM MAXEON SOLAR TECHNOLOGIES

amsc

CONFIDENTIAL

Our new solution: multi-day storage (MDS) through a rechargeable iron-air battery system

What makes up a Form Energy system Modular design enables easy scaling to GWh systems

Cell

Battery Module

Electrodes + Electrolyte

Smallest Electrochemical Functional Unit

~50 **Cells**

Smallest Building Block of **DC** Power

Product Building Block with integrated module auxiliary systems

Enclosure

Power Block

System

~5 Modules

~3.5 MW / 350 MWh

<2 acres

~50 - 100 **Enclosures**

Smallest independent system and **AC Power** building block

10 MW / 1000 MWh

5+ acres

10s - 100s of **Power Blocks**

Commercial Intent System

CONFIDENTIAL

Over 5 GWh of Commercial Engagements

First-of-its-kind 1.5 MW /150 MWh MDS project in Cambridge, Minnesota to come online in 2024

Two 10 MW / 1,000 MWh MDS systems; one in Becker, MN and one in Pueblo, CO. Both projects are expected to come online as early as 2025

15 MW / 1500 MWh MDS system in Georgia to come online as early as 2026

XcelEnergy[®]

5MW / 500 MWh

Darbytown Storage Pilot Project in Henrico County, VA expected to be operational by 2026

10 MW / 1000 MWh MDS system in New York to come online as early as 2025

Why they chose Form

Non-flammable aqueous electrolyte.

No risk of thermal runaway. No heavy metals.

100+ hr duration required to make wind, water and solar reliable year round, anywhere in the world.

SCALE

Uses materials available at the global scale needed for a zero carbon economy.

High recyclability.

Lowest cost rechargeable battery chemistry.

At scale, < 1/10th the cost of lithium-ion batteries.

Why they chose Form

Non-flammable aqueous electrolyte.

No risk of thermal runaway. No heavy metals.

100+ hr duration required to make wind, water and solar reliable year round, anywhere in the world.

Aligns with Austin Energy's REACH Pillars

Uses materials available at the global scale needed for a zero carbon economy.

High recyclability.

Lowest cost rechargeable battery chemistry.

At scale, < 1/10th the cost of lithium-ion batteries.

CONFIDENTIAL 11

Austin Energy: Form Energy's Initial Analysis

Identified 3 applications where multi-day storage would contribute significant value

Application 1

Replacing Fayette Power Project Coal Generation

Providing zero-carbon baseload power.

Clean, low cost peaker plant alternative.

Application 2

Decker Creek GT Generation Replacement

Resiliency for Extreme Weather Events

Significantly de-risk major weather events, such as: Winter Storm Uri, storm Mara, heat waves, and low wind production.

Application 1 | Replacing Fayette Power Project Generation

© 2023 Form Energy

Form

Extra hours really matter during renewable lulls

Shorter duration storage fills in renewable generation gaps but is not well suited for continuous dispatch during extended lulls

Form

Application 2 | Decker Creek natural gas peaker replacement

60 MW of Form's 100-hour battery is able to provide full coverage of GT 2's 2022 generation

Form

energy

Replacement = Reduced emissions

Avoided Criteria Pollutant Emissions, assuming MDS replacement of Decker Creek GT

Source: 2016-2022 CEMS data for Decker Creek GT 2, as compiled by S&P Global Market Intelligence.

- Form Energy's battery provides generation with no on-site criteria pollutants
- As Austin Energy's portfolio continues to decarbonize, grid emissions from battery charging will continue to decline, eventually approaching net-zero by 2035.

Application 3 | Resiliency for the next extreme weather events

During events like Uri, MDS provides significant cost savings for Austin Energy

Iron-air battery operations during Winter Storm Uri

Form

Application 3 | Resiliency for the next extreme weather events During the week of Uri, MDS would capture 5x the savings vs. a Li-ion system

MW 4hr Lithium 50 ion system during 2021's Winter Storm Uri

Li-ion battery operations during Winter Storm Uri 75% State of Charge 50% 25% m 2021-02-12 0: 2021-02-13 0 2021-02-14 0 2021-02-15 0: 2021-02-16 0: 00:00 00:00 00:00 00:00

Deep continuous discharge over the event allows MDS achieve >90% utilization

Li-ion SoC — Price

Shallow cycling increases charging costs, allowing only ~45% utilization

A partnership between Austin Energy and Form would enable transition to a deeply decarbonized, cost-effective, reliable system

Demonstrate

Inclusion in Resource Generation Plan

L	Form	

2026

Multi-day Storage Cumulative Capacity

20 MW

Percent Decarbonized

Scale

Transform

CONFIDENTIAL 19

Let's stay in touch!

Ford Wyatt

Senior Project Development Manager

(703) 554-3834 fwyatt@formenergy.com

30 Dane St. Somerville, MA 02143 1 (844) 367-6462 info@formenergy.com www.formenergy.com

Appendix

Decker Creek Replacement: Carbon Emissions Reduction

Assumptions:

Storage Charging Emissions were assumed from Austin Energy historical average emissions Storage Discharge: Typical Emissions from Gas Peaker CT, Decker data was not available on CEMs

Form's iron-air battery is the only technology targeting multi-day duration without geographic constraints

Duration - Hours

Form MDS is the only asset class that delivers clean, firm low-cost capacity at scale

	Solution attributes	Fo
Clean	Zero emissions	
	Technology can be widely deployed at scale by 2030	
Reliable	Reliable capacity over multiple days	
	No geographic limitations	
Affordable	Cost competitive relative to alternatives	
	Low risk of stranded asset	

What makes up a Form Energy system Sample 3.5 MW Power Block

ERCOT is embracing storage

MISO

OPERATING

2.2 GW of operating large-scale battery storage.

FUTURE BUILDOUT

29.2 GW to come online by end of the 2020s.

CO-LOCATION

13 GW of stand-alone capacity. 16.2 GW co-located storage systems, of which 97% are to be paired with a solar project.

DURATION

Primarily 1-2 hours with ancillary services comprising majority of value stack. Movement towards longer durations given reliability concerns.

Our new solution: multi-day storage (MDS) through a rechargeable iron-air battery

COST

Lowest cost rechargeable battery chemistry. Less than 1/10th the cost of lithium-ion batteries.

SAFETY

Non-flammable aqueous electrolyte. No risk of thermal runaway. No heavy metals.

SCALE

Uses materials available at the global scale needed for a zero carbon economy. High recyclability.

RELIABLE

100+ hr duration required to make wind, water and solar reliable year round, anywhere in the world.

Formware Capacity Expansion & Dispatch Model

What should we build? How should it operate?

Inputs

Project-Specific Constraints Site capacity, target availability, ...

Sophisticated Storage Models \$/kWh, \$/kW, RTE, ...

Market Conditions

PPA price, capacity prices, energy and ancillary prices, RPS, ...

Grid Data Transmission limits, load forecasts, retirements, ...

Generator Data Capex, opex, start costs,

heat-rates, fuel costs, solar & wind resource, ...

Formware[™] Capacity expansion & dispatch model

Differentiators

- Granularity: 8760+ model captures price and resource volatility
- **MDS Modeling:** Can capture dynamics of multiday storage operation
- Scenario Modeling: Multi-scenario optimization validates solution across range of conditions
- Model Customization: Customizable model allows Form to deliver bespoke analyses on-demand

Outputs

Recommended Energy Asset Sizing Power, energy capacity

Hourly Operational Profiles 8760+ by energy asset

Storage "Duty Profile" Cycles/yr, peak power

Project Financials LCOE, FCF, IRR

Sensitivity Analysis Risks and trade-offs from input uncertainties

Geographically Unconstrained

CONFIDENTIAL 29

